AD-A247 516
ACHIEILAERAEN o

Architectural Adaptability
in Parallel Programming

Lawrence Alan Crowl

Technical Report 381
May 1991

92-0632
AR I. lll‘

UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

- Best
- Available
Copy

Architectural Adaptability
in Parallel Programming

by

Lawrence Alan Crowl

Submitted in Partial Fulfillment
of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

Supervised by Thomas J. LeBlanc
Department of Computer Science

University of Rochester
Rochester, New York

May 1991

Lo

(© 1991, Lawrence Alan Crowl, Rochester, New York

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO |

TR 381

3. RECIPIENT’'S CATALOG NUMBER

4. TITLE (and Subtitle)

Architectural Adaptability in Parallel

S. TYPE OF REPORT & PERIOD COVERED

technical report

Programming

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)

Crowl, Lawrence A.

8. CONTRACT OR GRANT NUMBER(s)
N0O0014-87-K-0548
N00014-82-K-0193

9. PERFORMING ORGANIZATION NAME AND ADORESS
Computer Science Dept.
University of Rochester
Rochester, NY, 14627, USA

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

1. CONTROLLING OFFICE NAME AND ADDRESS

DARPA

12. REPORT DATE

May 1991

1400 Wilson Blvd.
Arlington, VA 22209

13. NUMBER OF PAGES

114 paaqes

4. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Ollice)

Office of Naval Research
Information Systems

1S. SECURITY CLASS. (of thie report)

unclassified

Arlington, VA 22217

15a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. GISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abetrect entered In Block 20, Il di{ferent from Report)

18. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on reverae side if necessary and identify by Block number)

annotations; Matroshka; Natasha

control abstraction: programming lanquage; architectural independence;

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

(see reverse)

FORM
JAN 73

DD , 1473

EDITION OF ' NOV 63 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT

To create a parallel program, programmers must decide what parallelism to exploit,
and choose the associated data distribution and communication. Since a typical
algorithm has much more potential parallelism than any single architecture can
effectively exploit, programmers usually express only the exploitation of parallelism
appropriate to a single machine. Unfortunately, parallel architectures vary widely.
A program that executes efficiently on one architecture may execute badly, if at all,
on another architecture. To port such a program to a new architecture, we must
rewrite the program to remove any ineffective parallelism, to introduce any
parallelism appropriate for the new machine, to re-distribute data and processing,
and to alter the form of communication.

Architectural adaptability is the ease with which programmers can tune or port a
program to a different architecture. The thesis of this dissertation is that control
abstraction is fundamental to architectural adaptability for parallel programs. With
control abstraction, we can define and use a rich variety of control constructs to
represent an algorithm'’s potential parallelism. Since control abstraction separates
the definition of a construct from its implementation, a construct may have several
different implementations, each providing different exploitations of parallelism. By
selecting an implementation for each use of a control construct wvith annotations,
we can vary the parallelism we choose to exploit without otherwise changing the
source code.

We present Matroshka, a programming model that supports architectural
adaptability in parallel programs through object-based data abstraction and closure-
based control abstraction. Using the model, we develop several working example
programs, and show that the example programs adapt well to different architectures.
We also outline a programming method based on abstraction. To show the
implementation feasibility of our approach, we describe a prototype language based
on Matroshka, describe its implementation, and compare the performance of the
prototype with existing programs.

Curriculum Vitae

Lawrence Alan Crowl was born on the 25 of July 1959 in Sacramento, California.
Since then he has lived in Kansas, Florida, New Hampshire, Alabama, California, New
Mexico, Rheinland-Pfalz (Germany), Ohio, Virginia, Colorado, and New York. His
pursuit of a doctorate at the University of Rochester caused his longest stay in any one
state!

Starting in September 1977, Lawrence attended Denison University in Granville,
Ohio. There he served as a member of the Computer Center Advisory Committee and
the Special Committee on the Future of Computer Service, and worked for the Computer
Center as a programmer. He was inducted into the Sigma Xi (Scientific Research), Pi
Mu Epsilon (Mathematics) and Sigma Pi Sigma (Physics) honoraries. He received the
Gilpatrick Award for Excellence in Mathematics, and was on the Dean’s List two years.
In May 1981, he received a Bachelor of Science Magne cum Laude in Computer Science
and Physics. His Honors Thesis was “A Terminal Oriented Master/Slave Operating
System”.

In September 1981, Lawrence started graduate school in computer science at the
Virginia Polytechnic Institute and State University in Blacksburg, Virginia. There he
worked as a graduate teaching assistant for the Compnter Science Department. He was
inducted into the Upsilon Pi Epsilon (Computer Science) honorary. In July 1983, he
received a Master of Science in Computer Science and Applications. His Master’s Thesis
was “A Macro System for English-Like Commands™.

From March 1983 through August 1985, Lawrence worked as a software engineer for
Hewlett-Packard Company in Loveland, Colorado. There he developed system software
for an integrated-circuit tester and a printed-circuit-board tester.

In September 1985, Lawrence entered the University of Rochester Computer Science
Department. He worked primarily as a research assistant, but also as teaching assis-
tant for the Problem Seminar (the graduate immigration course) and Programming
Languages.

Lawrence is a member of the Sigma Xi Scientific Research Society, the Association
for Computing Machinery, and its Special Interest Group on Programming Languages.

il

Acknowledgments

First, I would like to thank Thomas J. LeBlanc, my advisor, for his untiring efforts
in helping me separate the wheat from the chaff in this dissertation. I would also like
tc thank my committee Douglas L. Baldwin, Robert J. Fowler, Michael L. Scott, and
Edward L. Titlebaum, for their effort.

Three students deserve special recognition for their continuing aid in exploring the
ideas in this dissertation. They are Alan L. Cox, John M. Mellor-Crummey, and César A.
Quiroz.

I also thank my family for their long-distance support and encouragement.

This work was supported by the National Science Foundation under research grants
CCR-8320136 and CDA-8822724, the Office of Naval Research under research contract
N00014-87-K-0548, and the Office of Naval Research and Defense Advanced Research
Projects Agency under research contract N00014-82-K-0193. The Government has cer-
tain rights in this material.

Abstract

To create a parallel program, programmers must decide what parallelism to exploit,
and choose the associated data distribution and communication. Since a typical algo-
rithm has much more potential parallelism than any single architecture can effectively
exploit, programmers usually express only the exploitation of parallelism appropriate
to a single machine. Unfortunately, parallel architectures vary widely. A program that
executes efficiently on one architecture may execute badly, if at all, on another archi-
tecture. To port such a program to a new architecture, we must rewrite the program to
remove any ineffective parallelism, to introduce any parallelism appropriate for the new
machine, to re-distribute data and processing, and to alter the form of communication.

Architectural adaptability is the ease with which programmers can tune or port
a program to a different architecture. The thesis of this dissertation is that control
abstraction is fundamental to architectural adaptability for parallel programs. With
contro} abstraction, we can define and use a rich variety of control constructs to rep-
resent an algorithm’s potential parallelism. Since control abstraction separates the
definition of a construct from its implementation, a construct may have several different
implementations, each providing different exploitations of paralleiism. By selecting an
implementation for each use of a control construct with annotations, we can vary the
parallelism we choose to exploit without otherwise changing the source code.

We present Matroshka, a programming model that supports architectural adapt-
ability in parallel programs through object-based data abstraction and closure-based
control abstraction. Using the model, we develop several working example programs,
and show that the example programs adapt well to different architectures. We also
outline a programming method based on abstraction. To show the implementation
feasibility of our approach, we describe a prototype language based on Matroshka, de-
scribe its implementation, and compare the performance of the prototype with existing
programs.

Table of Contents

Curriculum Vitae

Acknowledgments

Abstract
List of Tables

List of Figures

1

Vi

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

1.1
4.2
1.3

Introduction

Architectures and Programming. o oL,
Architectural Adaptability L.
Statement of Thesis,
Dissertation Overview 0 i it it it tit e

Related Work

Early Parallel Languages
Exploiting Parallelism
Distributing Data and Processing
Choosing Communication
Summary e e

Matroshka Model and Rationale

Uniform Data Abstraction
Synchronous Operation Invocation
Copy Model of Variables and Parameters
Concurrent Operation Execution
Uniform Control Abstraction
Early Reply from Invocations
Summary

Control Abstraction
Expressing Parallelism
Exploiting Parallelism
Distributing Processing
Extended Examples
Gaussian Elimination. oL oL

Programming Method

Abstract Early and Often
Use Precise Control Constructs

Experiment with Annotations

.......................

........................

Natasha Implementation

Compiler and Library Organization
Optimizing Natasha Mechanisms
Performance Evaluation

.....................

...........................

Natasha Prototype Language

6 —
6.1
6.2
6.3 Reuse Code .
6.4

7 —
7.1
7.2
7.3

8 — Conclusions
8.1 Contributions
8.2 Future Work

Bibliography

A —
Al Syntax
A.2 Types
A.3 Variables . .
A.4 Records . ..
A.5 Expressions .
A.6 Closures . . .
A.7 Object Types

.................................

.................................

.................................

a9
69
70
75
75

76

7
78
82

88
89
90

93

101
101
104
106
110
110
111
112

vit

Vil

List of Tables

3.1 Combinations of Variable Models 25
A.l Simple Tokens 102
A2 CharacterClasses o i it i 102
A3 Complex Tokens v i i e 102
A4 Reserved Identifiers oL 103
A5 Grammar e e e e e e e e 103
A.6 Operations on Inherent Objects 105
A.7 Operations on Inherent Type Objects 105
A.8 Operations on Boolean and Integer Objects 107
A.9 Operations on Character, String, and Range Objects 108
A.10 Operations on Simple Type Objects 108
A.11 Operations on Synchronization Objects 109
A.12 Operations on Synchronization Type Objects 109

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9

7.1
7.2
7.3
7.4
7.5

Al

List of Figures

Copy Model of Variables 24
Reference Model of Variables 24
Example Copying Input to Output 34
Example Printing a Range of Integers 34
Example Implementation of Forkand Join 39
Example Implementationof Forall 41
Example Annotated Quicksort 44
Gaussian Element Elimination Goal 50
Performance of First Gaussian Program 52
Performance of Distributed Gaussian 53
Sequential Gaussian Element Elimination 54
Phased Gaussian Element Elimination 55
Fully Parallel Gaussian Element Elimination 56
Performance of Phased and Fully Parallel Gaussian 57
Performance of Fully Parallel Gaussian Distributions 59
Performance of Gaussian With Data Abstraction 60
Manual Optimization of Sequential Natasha 84
Initial Performance of Parallel Natasha 85
Performance With Inner-Loop Optimization 86
Performance Without Redundant Copies 86
Performance With Final Optimizations. 87
Example Computing Factorials Recursively 114

ix

1 — Introduction

Likewtse, when a long series of identical computations is to be performed,
such as those required for the formation of numerical tables, the machine
can be brought into play so as to give several results at the same time,
which will greatly abridge the whole amount of the processes.

— General [. F. Manabrea, 1842, referring to Charles Babbage’s
Analytical Engine, the first computer.

Most current computers execute sequentially, one operation at a time. The great speed
at which these computers execute their cperations gives them their computing power.
Unfortunately, further increases in the speed of execution are becoming expensive; so
there is a practical limit on the computational power of cost-effective sequential comput-
ers. We can get more cost-effective computing power by using computers that execute
many operations at a time, in parallel. Unlike sequential computers, there are many dif-
ferent ways to organize parallel computers. Furthermore, programmers often assume one
particular organization when writing parallel programs. While the resulting programs
execute efficiently on one computer, they often execute poorly on another. Rewriting
the programs to execute efficiently on the second computer is often as difficult as start-
ing over from scratch. This dissertation describes how to write programs that take little
effort to make them execute efficiently on a wide variety of parallel computers.

1.1 Architectures and Programming

In developing a computer program, programmers have two tasks. First, they must
identify an algorithm for solving the problem; and second, they must implement that
algorithm on the computer at hand. For the past forty years, nearly all computers
have had a von Neumann architecture [Burks et al., 1946], in which operations proceed
sequentially. Programs that execute efficiently on one von Neumann computer will al-
most always execute efficiently on another. As a result of this stability in architecture,
most programmers and programming languages can safely assume a von Neumann ar-
chitecture. The assumption has become so safe that it is implicit in most programs and
programming languages. Indeed, the reliance on sequential execution is so prevalent
that the term ‘algorithm’ usually means a sequential algorithm unless explicitly stated
otherwise.

The von Neumann architecture has remained prevalent because manufacturers have
been able to increase the speed of computers by increasing the speed of their electrical
components, and by using parallelism in the implementation of the architecture. Unfor-
tunately, both of these techniques are reaching their limits. First,increasing the speed of
the basic electrical components is progressively more expensive. Second, the frequency
of conditional branches within most von Neumann programs limits the effectiveness of
parallelism in the implementation of a von Neumann architecture. We are now reaching
the limits at which we can cost-effectively provide increased computing power solely
though faster implementations of the von Neumann architecture. As computational
speeds increase, architectures that provide parallelism will be more cost effective than
the von Neumann architecture.

In contrast to sequential computers, parallel computers have a wide variety of ar-
chitectures. They may provide a single instruction stream that operates on many data
streams (SIMD), or they may provide many independent instruction and data streams
(MIMD). For example, the Iliac-IV broadcasts the same instruction to 64 processors
while each Cm* processor executes instructions independently. Existing parallel com-
puters provide from one (e.g. the Cray 1) to 65536 (e.g. the Connection Machine)
processors. Computers may provide information storage in three different ways. They
may provide storage that all processors access equally (e.g. the Sequent Balance); they
may split the storage among processors so that accessing another processor’s portion
is more expensive (e.g. the BBN Butterfly); or they may not provide any access to
another processor’s portion (e.g. the Hypercube). When processors cannot directly ac-
cess non-local storage, they must communicate with other processors for the necessary
information. Computers may communicate via high-speed inter-processor networks,
medium-speed local-area networks, and low-speed long-distance networks. Any single
difference in these characteristics leads to qualitatively different architectures, so there
are many potential architectures.

Although an algorithm may have an efficient implementation on a wide range of
architectures, each class of architecture may exploit a different subset of the parallelism
inherent in the algorithm. Unfortunately, the implementation of a parallel algorithm
on one architecture may provide little leverage in finding an efficient implementation on
another architecture. To implement an algorithm on a particular machine, we must do
three things.

Identify and Exploit Parallelism: Algorithms generally contain more potential paral-
lelism than any one machine can effectively ezploit; so we must select the subset of
potential parallelism that we wish to exploit. This subset depends on the number
of processors, the overhead associated with starting a parallel activity, and the
overhead associated with any necessary synchronization. Since these factors dif-
fer depending on the architecture, the appropriate exploitation of parallelism will
depend on the architecture. For example, the Transputer has hardware support
for quickly creating and managing parallel activities, so programs executing on
the Transputcr can efficiently manage more parallel activities than programs on
many other machines.

Distribute Data and Processing: Parallel architectures can execute more quickly when
the data a processor needs is close to the processor. For example, programs on
the BBN Butterfly can access memory local to the processor five to fifteen times
faster than memory local to another processor. When we distribute data and
computational tasks so that tasks that share data are close to the data and to
each other, the overall efficiency of the program will be greater.

Choose Communication: Communication in shared-memory multiprocessors (e.g. the
Sequent Balance) can be several orders of magnitude faster than communication
in distributed memory machines (e.g. the Hypercube). The cost of communication
affects the parallelism that programmers can exploit efficiently. Some architectures
provide several forms of communication so that programmers can exploit a wider
range of parallelism. Programmers must choose the communication mechanisms
that are appropriate to the parallelism exploited.

Because of the wide variety of parallel architectures and the many possible interleav-
ings of statement executions, implementing a parallel algorithm is a difficult problem.
There are two primary approaches to solving this problem. The first approach relies on
the programmer to express explicitly the parallelism in an algorithm and its implemen-
tation on an architecture. The second approach relies on the programming language
translator to accept non-parallel descriptions of an algorithm (sequential or declarative)
and find the appropriate parallelism for a machine. While the second approach results
in less work for the programmer, current translators produce programs that execute
slowly relative to explicitly parallel programs. We use parallel computers for the speed
advantage they provide over sequential computers. However, parallel computers have
modest potential [Snyder, 1986), at best they can improve computational speed linearly
in the number of processors. So, users are often willing to invest considerable effort
in making efficient use of parallel computers. Any language translator that introduces
much inefficiency will exclude the set of users that care most about performance —
exactly those users of parallel computers. Because of the desire for efficient execution,
this dissertation concentrates on explicitly parallel imperative languages.

1.2 Architectural Adaptability

When writing an explicitly parallel program, programmers typically limit consideration
to the parallelism in the algorithm that a given machine can effectively exploit, and
ignore any other potential parallelism. The resulting programs embed assumptions
about the effective granularity of parallelism, the distribution of processing and data,
and the cost of communication and synchronization. While this approach may result
in an efficient implementation of the algorithm under a single set of assumptions, the
program is difficult to adapt to a different set of assumptions because the distinction
between potential and exploited parallelism has been lost. All that remains in the
program is a description of the parallelism that is most appropriate for our original
assumptions about the underlying machine. When an architecture violates any of these
assumptions, the program must be restructured to avoid a potentially serious loss of
performance. This restructuring can be complex, because the underlying assumptions

are rarely explicit, and the ramifications of each assumption are difficult to discern. For
example, programs written for a shared-memory machine will communicate through
variable access without explicitly noting the resulting communication. Emulating this
shared memory access on a computer without shared memory may or may not be
effective, depending on the program. Assuming characteristics of a given machine in
the development of a parallel program will limit the range of machines for which the
program is efficient.

We might want to change the architectural assumptions in a parallel program for
two reasons:

Tuning: We may not be able to predict a priori those sources of parallelism in an
algorithm that are most appropriate for an architecture (or a particular class of
input values). Changing an incorrect exploitation of parallelism can be a complex,
ad hoc task, similar to the problem of changing data representations in a program
lacking data abstraction.

Porting: We may wish to port programs from one architecture to another and to vary
the number of processors in use. Since parallel architectures vary widely, different
implementations of the same program will usually exploit different opportunities
for parallelism. Uncovering and exploiting these opportunities can result in a
massive restructuring of the program.

Architectural adaptability is the ease with which programs can be tuned or ported to
different architectures. We can measure architectural adaptability by the extent of
source code changes necessary to adapt a program to an architecture, and the intellectual
effort required to select those changes.

A programming system provides architectural independence over a range of archi-
tectures when it automatically selects the exploitation of parallelism for a particular
architecture in that range, and the programmer makes no architecture-specific changes.
Given the difficulty of achieving true architectural independence, this dissertation re-
lies on a simple mechanism, annotations, that enables the programmer to select the
exploited parallelism without significant changes to the rest of the source program.
Changing annotations will usually suffice to adapt a program to an architecture. Where
changes to source code are necessary, we would like to minimize both the number of
changes and the effort required to make the changes.

1.3 Statement of Thesis

Achieving architectural adaptability is easier when the program separates the expression
of an algorithm from its implementation on a given machine. For instance, in explicitly
parallel imperative programs we need to specify the potential parallelism in an algo-
rithm and then separately specify its exploitation in a given implementation. With this
separation, we can specify the potential parallelism during program design, and later
choose an implementation during program debugging and tuning.

The separation of the specification of potential parallelism from its implementation
is an example of abstraction. In programming, abstraction is the process of separating

the use of something from its implementation. Programming language designers almost
necessarily use abstraction in the development and definition of their languages. While
this is an effective use of abstraction, the process of abstraction is most useful when
application programmers can continue the process in the development of their programs.
In applying abstraction to parallel programming, we can use abstractions to represent
potential parallelism, distribution and communication, and then use implementations
of those abstractions appropriate for a given machine. While any given implementation
may exploit only a small subset of the potential parallelism, the program expresses all
potential parallelism.

Explicitly parallel imperative programs use control flow constructs, such as fork,
cobegin, and parallel for, to introduce parallel execution. Since the expression of par-
allelism in these programs is fundamentally an issue of control flow, control abstraction
should aid architectural adaptability. Control abstraction is the process of separating
the use of a control construct from its implementation. In particular, control abstrac-
tion can separate the semantics of statement sequencing from the implementation of
statement sequencing.

Control abstraction aids architectural adaptability in three ways, corresponding to
our original list of implementation problems.

Identify and Exploit Parallelism: We can use control abstraction to define control con-
structs that represent an algorithm’s potential parallelism, and define several im-
plementations for those constructs that exploit different subsets of the potential.
The algorithm determines the control constructs used to represent potential paral-
lelism; the architecture determines the implementations used to exploit parallelism.

Distribute Data and Processing: We can use data abstraction to define data structures
that may be distributed, and exploit different distributions with different im-
plementations of the data abstractions. However, data distribution alone is not
enough, we must also distribute processing. Again, we can use control abstrac-
tion to define control operations that distribute processing and to define control
operations on distributed data structures that distribute the processing with the
data.

Choose Communication: We can use argument passing in procedural abstraction (a
form of control abstraction) to represent potential communication. We can then
choose different exploitations of communication by selecting the appropriate imple-
mentation of procedure invocation. Implementations include the typical machine
branch implementation and remote procedure call implemented with messages.

Control abstraction is a central part of a general solution to each implementation. We
intend to show that control abstraction is an effective means for achieving architectural
adaptability in ezxplicitly parallel imperative programs.

1.4

Dissertation Overview

A parallel programming system must provide more than just control abstraction to be
effective. To test and support the ideas presented in this dissertation, we

designed the Matroshka (Marpémxa)! parallel programming model to support
architectural adaptability in parallel programming;

designed the Natasha (Hardmwa)? prototype programming language using the Ma-
troshka model;

implemented a compiler and runtime library for Natasha;
programmed several example applications; and

executed these examples to test their effectiveness.

Chapter 2 discusses some early parallel languages, the problems they present for
architectural adaptability, and related work in solving these problems. Chapter 3 intro-
duces the Matroshka model for parallel programming, with examples using the Natasha
prototype programming language. (Appendix A provides the complete Natasha lan-
guage definition.) Chapter 4 introduces control abstraction and its application to ar-
chitectural adaptability. Chapter 5 presents several extended examples of programming
for architectural adaptability. Chapter 6 discusses a method for achieving architectural
adaptability with abstraction. Chapter 7 presents the prototype implementation of
Natasha and the optimizations that make it competitive in performance with standard
sequential languages. Finally, chapter 8 presents the conclusions.

'Matroshka (also transliterated as Matréska) are the wooden Russian dolls where the smallest nests
within the next smallest and so on. They lock somewhat like squat bowling pins and are painted to
depict Russian peasant women.

?Natasha (also transliterated as Natasa) is an instance of a Russian peasant woman.

2 — Related Work

Pereant, inquit, qui ante nos nostra direrunt.
[Confound those who have said our remarks before us.]

— Aelius Donatus, fourth century A.D.

To create a parallel program, a programmer must decide what parallelism to exploit, how
to distribute data and processing among processors, and how to communicate between
parallel tasks. This chapter first discusses early programming language support in
solving these problems and then presents several techniques that address each of these
problems in the context of architectural adaptability.

2.1 Early Parallel Languages

Early parallel programming languages were intended as tools to program a specific ar-
chitectural model rather than as a general means for specifying parallel algorithms. As
such, early languages provided separate mechanisms that represented different features
of the class of real machines for which the languages were intended. These mechanisms
reflected the parallelism, distribution and communication costs of their architectures.
For example, Concurrent Pascal [Brinch Hansen, 1975] provided cobegin ...ccand con-
struct to represent the concurrent execution of statements. Statements shared storage
at a fine grain. This reflected Concurrent Pascal’s expected used as a language for
concurrent programming on a uniprocessor. Distributed computing, in which comput-
ers share no storage but communicate by passing messages, attracted many languages.
These include PLITS [Feldman, 1979], which provided extensive facilities for handling
messages between autonomous processes, and Distributed Processes [Brinch Hansen,
1978], which provided an early form of remote procedure call. In essence, these lan-
guages presented virtual machines that closely matched real machines. The advantage
these languages provided was that the virtual machines presented by the languages were
easier to program than the real machines.

In a distributed system, communication between different processors typically costs
two orders of magnitude more than communication within a processor. Many dis-
tributed programming languages such as PLITS [Feldman, 1979} and *MOD [Cook.
1980]. make distributed objects visible within the language under the assumption that
programmers will manage visible costs more effectively than invisible costs. The result-

-1

ing programs often execute efficiently only on that architecture or architectures that can
emulate it efficiently. This issue is especially important because, unlike the von Neu-
mann architecture for sequential computers, there is no generally accepted archetype
for parallel computers. For example, programming languages based on shared memory
do not execute well on distributed systems.

2.1.1 The Multiple Mechanism Problem

When parallel and sequential mechanisms are distinct, programmers must decide to
implement a given object either as a parallel object or as a sequential object early in
program development. Because communication among distributed objects is expensive,
application programmers tend to make distributed cbjects large to minimize the inter-
actions between them and the resulting overhead. On the other hand, programmers
of libraries do not know the context in which their code will be used, so they often
choose a higher-cost, more general, parallel implementation rather than a cheaper se-
quential implementation [Greif et al., 1986]. This, in turn, inhibits use of the library by
application programmers concerned with performance. Libraries must provide general
purpose abstractions in both mechanisms to provide programmers with the incentive to
use them. Multiple mechanisms tend to discourage the specification of parallelism and
the construction of libraries.

The difference between local and remote communication costs in multiprocessors
is much lower than in distributed systems, which encourages more frequent commu-
nication within programs. Unfortunately, the appropriate binding of parallelism to
program components in such an environment is often not obvious before doing perfor-
mance experiments on completed code. For example, an algorithm for finding subgraph
isomorphisms using constraint propagation has potential parallelism in many places.
The two primary sources of parallelism are in searching the constraint tree, and in the
matrix calculations that prune the tree at each node. The coarsest parallelism is at
the tree search, so we expect it to have the least overhead. However, tree search re-
sults in speculative parallelism, so there may substantial wasted work [Costanzo et al.,
1986]. Parallelizing the matrix operations may provide better performance in spite of
the higher overhead. In multiprocessors, predicting the appropriate mechanism among
many may be difficult.

When programmers must choose parallelism early in program development, fixing an
incorrect choice or porting the program to a different architecture involves substantial
changes to the program. If a choice of a mechanism is incorrect, the programmer must
recode portions of the program and reintegrate it into the remainder of the program. In
addition, the mechanism used to implement an abstraction is often visible at the points
where the abstraction is used. Because the use of an abstraction may be distributed
throughout the program, a change in mechanism could involve rewriting much of the
program. Programmers will only make such changes under extreme circumstances.
This inhibits tuning the program to make optimal use of the parallelism available and
severely handicaps someone attempting to port the program to another architecture.
This latter problem is difficult enough so that programmers often write another program
based on the algorithm of the original program rather than port the program itself.

When language mechanisms enable programmers to bind parallelism late in program
development, choosing the granularity and location of parallelism becomes part of the
optimization effort, rather than the algorithm development effort.

2.2 Exploiting Parallelism

Recent approaches to the problem of specifying and exploiting parallelism typically rely
on a general strategy of representing much of the potential parallelism in an algorithm,
and then selecting an appropriate subset.! This strategy is a significant departure from
earlier practice, where programs described only the parallelism exploited on a given
machine, and therefore were difficult to adapt to a new architecture.

2.2.1 Parallel Function Evaluation

This dissertation focuses on explicitly parallel imperative languages because of their per-
formance advantage over functional languages. However, work on architectural adapt-
ability in functional languages can provide incites useful to explicitly parallel program-
ming. Functional programs have no side effects, so expressions may be evaluated in any
order. Therefore we can evaluate all expressions in parallel, and parallelism is implicit
in functional programs. There are two sources of parallelism in function evaluation, par-
allel evaluation of multiple arguments to a function and lazy evaluation of the value of
a function. Owing to the difficulty of automatically finding and exploiting the optimal
sources of parallelism in a functional program, several researchers have suggested the
use of annotations to specify lazy, eager, parallel, and distributed function evaluation
(Burton, 1984; Halstead, 1985; Hudak, 1986].

ParAlfl [Hudak, 1986; Hudak, 1988] is a functional language that provides annota-
tions to select eager evaluation over lazy evaluation, resulting in parallel execution, and
to map expression evaluation to processors. A mapped ezpression in ParAlfl can dynam-
ically select the processor on which it executes. An eager ezpression executes in parallel
with its surrounding context. By using a combination of eager and mapped expressions,
a programmer can select the parallelism to be exploited and map it to the underlying
architecture. The use of mapped and eager annotations does not change the meaning
of the program, which in a functional programming language does not depend on the
evaluation order. Thus, ParAlfl achieves a significant degree of architectural adapt-
ability, requiring unly changes to annotations to port a program between architectures.
ParAlfl achieves this goal only in the context of functional languages, however. Many
of the issues that we must address before we can achieve architectural adaptakility for
imperative programs do not arise in functional programs, including the expression of
potential parallelism, the effect of exploiting parallelism on program semantics, and the
relationship between explicit synchronization and parallelism.

Although pure Lisp is functional, most Lisp-based prograrming languages are im-
perative. Like ParAlfl, an imperative Lisp can exploit parallelism in function evaluation

'This idea is also effective in structuring parallelizing compilers [Quiroz, 1991].

by selecting either lazy or eager (and potentially parallel) evaluation. For example, Mul-
tilisp [Halstead, 1985) provides the function pcall for parallel argument evaluation, and
future for parallel expression evaluation. Qlisp [Goldman et al., 1990] is similar, but
provides more facilities for the conditional exploitation of parallelism. Unlike ParAlfl,
Multilisp is an imperative language with assignment. Since parallel execution may af-
fect the order of assignments, the use of pcall and future to introduce parallelism can
affect the semantics of the program. In particular, a programmer can use future only
when certain that it will not produce a race condition. Halstead advocates a combi-
nation of data abstraction with explicit synchronization and a functional programming
style to minimize the extent to which side-effects and parallelism conflict.

To the extent that only the side-effect-free subset of Multilisp is used, both pcall
and future can be thought of as annotations that select a parallel implementation
without affecting the semantics of the program. Like ParAlfl, a side-effect-free Multilisp
program can adapt easily to a new architecture with the addition or deletion of pcall
and future. However, Multilisp was not designed to be used in such a limited fashion.
A Multilisp program that uses side-effects to any significant degree cannot adapt easily
to a new architecture, since exploiting alternative parallelism in the program requires
that the programmer understand the relationship between side-effects and the intended
use of pcall or future.

2.2.2 Data Parallelism

Data parallel languages provide high-level data structures and data operations that
allow programmers to operate on large amounts of data in an SIMD fashion. The
compilers for these languages generate parallel or sequential code, as appropriate for
the target machine. Fortran 8z [Albert et al., 1988] and APL [Budd, 1984] provide
operators that act over entire arrays, which could have parallel implementations. The
Seymor language [Miller and Stout, 1989] provides prefix, broadcast, sort, and divide-
and-conquer operations, which also have parallel implementations. These languages
achieve architectural independence for one class of machine (i.e. vector or SIMD) by
providing a set of parallel operations that have efficient implementations on that class
of machine.

The Paralation model [Sabot, 1988] and the Connection Machine Lisp [Steele and
Hillis, 1986] support data parallelism through high-level control operations such as it-
eration and reduction on parallel data structures. These operations represent a limited
use of control abstraction, demonstrating that it can be used to define data parallelism.
Such operations are not a general solution to the problem of specifying parallelism
however, since parallelism is defined solely in terms of a particular data structure.

2.2.3 Fixed Control Constructs for Exploited Parallelism

Explicitly parallel languages typically provide a limited set of parallel control constructs,
such as fork, cobegin. or parallel for loops, which programmers use to represent and
exploit parallelism simultaneously. If the degree of parallelism specified using these
constructs is not appropriate for a given architecture, the resulting program is not effi-
cient. In general, the correspondence between the parallelism described in the program

10

and the parallelism exploited at run time is too restrictive in early explicitly paral-
lel languages; selecting an alternative parallelization often requires almost completely
rewriting programs.

2.2.4 Fixed Control Constructs for Potential Parallelism

Fortran 8z loosens the correspondence between potential and exploited parallelism with
the do across construct, which has both sequential and parallel implementations. Pro-
grammers use do across to specify potential parallelism, and the compiler can choose
either a sequential or parallel implementation as appropriate. Compilers on different
architectures may make different choices, thus providing a limited degree of architec-
tural independence. These choices are usually predefined by the compiler implementor;
the programmer has no mechanism to extend the set of choices<

The Par language [Coffin and Andrews, 1989; Coffin, 1989] (based on SR [Andrews
et al., 1988]) extends the concept of multiple implementations for a construct to user-
defined implementations. Par’s primary parallel control construct is the co statement,
which is a combination of cobegin and parallel for loops. The programmer may define
several implementations of co, called schedulers, which map iterations to processors
and define the order in which iterations execute. Using annotations, a programmer
can choose among alternative schedulers for co, and thereby tune a program to the
architecture at hand.

Any single control construct may not easily express all the parallelism in an algo-
rithm, however. Languages that depend on a fixed set of control constructs for paral-
lelism limit their ability to express certain algorithms easily. When the given constructs
do not easily express the parallelism in an algorithm, the programmer must either ac-
cept a loss of parallelism, or use the available constructs to express excessive parallelism,
and then remove the excess using explicit synchronization. The former approach lim-
its the potential parallelism that can be exploited, while the latter approach results in
programs that are difficult to adapt to different architectures. In the particular case of
Par, programmers must express all parallelism with co. It is tempting to create new
parallel control constructs by embedding synchronization within an implementation of
co. This approach changes the semantics of co however, and leaves a program sensitive
to the selection of implementations, violating the Par assumption that annotations do
not change the meaning of the program.

2.2.5 User-Defined Control Constructs

The problem with any approach to architectural adaptability based solely on select-
ing alternative implementations of a small fixed set of control constructs is that our
ability to describe potential parallelism is limited to compusitions of the parallelism
provided by the constructs. Chameleon [Harrison and Notkin, 1990; Alverson, 1990;
Alverson and Notkin, 1991} represents a first step towards user-defined control con-
structs. Chameleon is a set of C++ (Stroustrup, 1986] classes designed to aid in the
porting of parallel programs among shared-memory multiprocessors. It provides sched-
ulers for tasks, which are a limited form of control abstraction. Each task is a procedure
representing the smallest unit of work that may execute in parallel. Schedulers call tasks

11

via procedure pointers. Because Chameleon uses dynamic binding in the implementa-
tion of schedulers, a compiler cannot implement tasks in-line. In addition, programmers
must explicitly package the environment of the task and pass it to the scheduler. The
resulting overhead is acceptable only when tasks are used to specify the medium and
large grained parallelism appropriate to shared-memory multiprocessors.

2.3 Distributing Data and Processing

For machines that distribute storage among processors so that access to another pro-
cessor’s storage is either slower or not possible, programs execute faster when data is
co-located with the processor that uses the data. In the absence of sharing, this co-
location would not be a problem. However, programs do share data, to varying degrees.
Techniques for maintaining the sharing of data while still co-locating it with processors
include process movement, data movement, and data replication. Languages that ex-
pect to execute in environments with distributed storage usually provide mechanisms
to control the distribution of data and/or processing.

2.3.1 Static Distribution

Distributed Processes [Brinch Hansen, 1978] provided a static mapping of processes to
processors. Since, all data was local to a process, the mapping of data was implicit
in the mapping of processes. The static mapping of processes meant that any change
in machine configuration required re-mapping the processes, and in the worst case,
rewriting the program to include more processes so that it could take advantage of
additional processors.

2.3.2 Embedding a Virtual Machine

To avoid the problem of adjusting programs to every change in machine configuration,
several early distributed and parallel languages presented a means to define a program-
dependent virtual machine, and then program in terms of this virtual machine. This
virtual machine usually had a finer grain than the real machines. The programmer than
separately specifies the mapping from the virtual mackine onto the physical machine.
Several virtual processors may reside on a single physical processor, but no virtual
processor may reside on more than one physical processor. Languages taking this ap-
proach include *MOD [Cook, 1980], NIL [Strom and Yemini, 1983], Hermes {Strom
et al., 1991] and Poker [Snyder, 1984]. Poker assumes virtual processors will be small,
whereas *MOD and NIL assume they will be at least moderately sized.

2.3.3 Dynamic Distribution

Later languages provide mechanisms for dynamically determining the mapping of pro-
cessing and data to processors. This enables programs to adapt to different numbers
of processors by computing an appropriate mapping. ParAlfl provides mapped erpres-
sinns that assign the computation of a function to a specific processor. Since ParAlfl is
functional, data is implicitly mapped with expressions.

12

—_

Emerald [Jul et al., 1988] also provides means for computing an appropriate distribu-
tion. Unlike the functional ParAlfl, Emerald was intended for an evolving environment.
To adapt to 2 changing enviionment, data and processing will need to move from one
processor to ancther. Emerald provides mechanisms for explicitly moving data and
processing.

Object Movement in Emerald

Emerald is an object-based language. When invoking an operation on an object, Emer-
ald will normally send the invocation to the processor containing the object for execution
by that processor. However, Emerald also provides mechanisms to determine the lo-
cation of ohjects, move an object to a node, fix an object on a given node, unfix an
object, refix an object (an atomic unfix, move and fix). Since an Emerald object may
contain a process in addition to data, object migration subsumes both data and process
migration.

Emerald adopts a reference model of variables in which objects consist primarily of
a few references to other objects (see section 3.3). Emerald proves a uniform semantics
for all objects, local, co-located, and remote. Mc™ . . 0bjcct may mean that others
will also need to move soon. Because of the .ne-grained nature of Emerald objects,
the explicit management of every c:sject in a program would become an unacceptable
programming burden. To solve this problem, the Emerald compiler attempts to find
objects that are only referenced from /i hin o secord object, and therefore should move
with the second object [Hutchinson, 1987]. Moving several objects at a time is much
cheaper than moving them individually. In cases where the compiler cannot discover
restricted referencing, Emerald provides the notion of attached objects. Attaching an
object to another means that when the second object moves, the first will move with
it. This enables programmers to build collections of related objects that maintain their
relative locality dynamically.

Emerald also supplies two hints for moving arguments to operation invocations, call-
by-move and call-by-visit. Call-by-move indicates that the argument object should move
to the node containing the called object. Call-by-visit indicates that the argument object
should move to the node containing the called object for the duration of the call and then
move back. The caller indicates the appropriate transmission method. Call-by-move
and call-by-visit hints at the point of call are appropriate since the caller understands
the context of the call, and the movement is independent of semantics. Unfortunately,
if the caller is a general purpose abstraction, the caller does not understand the context
of the call. So, embedding the movement semantics in the source again restricts the
programmer to ad hoc abstraction.

In Emerald, objects that will not change (immutable objects). such as code or static
tables, can not only be moved, they can be replicated. Replication ena. 2s information
that is shared, but not updated, to be accessed efficiently from any node. Emerald only
requires that the abstract value of the object not change; the representation of the value
is free to change over time.

13

2.3.4 Disti bution via Data Abstraction

Data abstraction is a useful tool in parallel programming [Murtagh, 1983] as well as in
sequential programming. Recent languages rely on data abstraction to hide the distri-
bution of data and processing. With data abstraction, the implementation of a data
structure can change as the distribution needs change. For example, an array abstrac-
tion has several possible implementations. These include a contiguous representation on
a single node, a distributed representation where elements are divided among nodes, a
distributed representation where elements are associated with nodes in a modular fash-
ion, a fully replicated representation where each node contains a copy of the entire array,
and a partially replicated representation where each node duplicates only a portion of
the array.

Par

In Par [Coffin and Andrews, 1989], programmers define data abstractions for data struc-
tures that may be distributed. Later, programmers annotate abstractions to select an
implementation appropriate to the current architecture. For example, programmers use
an array abstraction, but later select a contiguous or distributed implementation of the
array. An implementation also exports a set of mapping operations. Programmers in-
voke these mapping operations when the pattern of access to a data abstraction changes.
Mapping operations allow the representation of the abstraction to change to meet new
access patterns. For example, when the program changes from read/write access to an
exclusive portion of the array to read-only access to most of the array, programmers
would insert an call to a mapping operation that changes the representation of the array
from distributed among processors to replicated across processors.

Not only is data abstraction useful for the distribution of data structures, it is also
useful for the distribution of single values [Coffin, 1990]. For example, many relaxation
algorithms have the form:

repeat
changed := false
for each element
compute new state
if new state # old state
changed := true
while changed

The straightforward parallel implementation of this algorithm distributes the elements
and state computations among processors. The problem with this implementation is
that each state computation will access the same shared “changed” variable. The re-
sulting contention wili cause poor performance for large numbers of processors. The
solution is to define a distributed boolean type. The distributed boolean type could
implement the assignment by updating a local copy of the boolean, and then when the
value is requested via the read, examine each processor’s copy and return the latest
value. Of course, we could also provide the standard single-valued implementation in

14

place of a distributed implementation. In either case, the use of the boolean variable
does not change.

In Par, programmers distribute data by building data abstractions based on dis-
tributed arrays. Programmers distribute processing with schedulers, which are dis-
tributed throughout the machine. The programmer is responsible for maintaining, via
annotations, the appropriate correspondence between data distribution and process dis-
tribution.

Chameleon

Chameleon [Harrison and Notkin, 1990; Alverson, 1990; Alverson and Notkin, 1991] is
a C++ library providing several data abstractions and their corresponding schedulers.
For example, the array representations include contiguous, replicated, and distributed.
The Chameleon library selects the appropriate implementation at runtime.

Chameleon programmers represent work in terms of chores. A chore consists of a
work procedure and a set of characteristics describing the procedure. These characteris-
tics include unit cost, for determining granularity; and parameter access type (read-only
or read-write), for managing software-caching. The scheduler works in terms of tasks,
which are a composite of chores and a preferred schedule of execution. A partitioner
procedure defines the schedule and calls the work procedure.

Chameleon improves on Par by more tightly integrating scheduling with the data
it accesses, but at the cost of considerable programmer effort in describing the chores
and tasks. Part of Chameleon’s descriptive cost arises because C++ lacks mechanisms
to represent control abstractions. Because programmers must describe loop bodies as
separate procedures, environments and parameters must be explicitly packaged, which
inhibits the wide-spread use of Chameleon data abstractions. This, in turn, means
that programmers will describe less potential parallelism within their programs, and
therefore limit the class of architectures for which the programs are effective.

2.4 Choosing Communication

Communication costs vary significantly across architectures, and the degree of paral-
lelism and the distribution of data among processors determines the need for communica-
tion. When programmers must explicitly specify communication, there are two possible
inefficiencies. First, programmers may specify communication at such a fine grain that
the communication overhead results in poor performance. Second, programmers may
underspecify communication, so that too many processors wait for work.

Most programming languages provide no help to the programmer in specifying an
appropriate balance in communication. Instead, they rely on the programmer to pro-
gram at a granularity appropriate to the class of target architectures. If we wish to
write programs that adapt to a wide range of architectures, we must provide a means
to easily insert and remove inter-processor communication.

15

2.4.1 Virtual Communication

One technique for adapting communication to the architecture is to specify virtual
communication and then package virtual communication into physical communication.
For example, Poker expects programmers to use fine-grained communication via small
messages between small virtual processors. Poker then applies compiler techniques
to combine several small messages into a single larger message. Combining messages
reduces the number of messages, which makes message overhead commensurate with
the architecture.

2.4.2 Communication via Invocation

Emerald also expects programmers to communicate at a fine grain, but via object in-
vocation rather than explicit messages. Object invocation traditionally uses procedure
implementations and Emerald takes advantage of this implementation when object re-
side on the same processor. When performing an invocation on a remote object, a pro-
cedure implementation will not work, and Emerald implements invocation via messages.
This is an instance of the general technique known as remote procedure call. Emerald
provided a significant improvement over earlier remote procedure calls by making the
semantics of remote procedure calls identical to local procedure calls. Programmers use
the same communication mechanism, the operation invocation (procedure call), at all
levels in the program. The Emerald implementation introduces communication among
processors only when necessary.

Programs communicate between referencing environments, not processes. The lit-
erature often thinks of communication as between processes, but this is primarily an
accident of early programming languages providing a referencing environment identical
to the process. When we associate communication with object invocation, we move
closer to the idea of communication between referencing environments.

2.5 Summary

Early parallel programming languages provided mechanisms that explicitly controlled
the parallelism, distribution and communication within programs. Programs written
in these languages usually executed efficiently only on the architecture for which they
were originally written. Later languages provided constructs that described potential
parallelism, rather than exploited parallelism. Then, late in program development, pro-
grammers could change the exploitation of the parallelism provided by those constructs.
Thase [2nguages were the first step in achieving architectural adaptability. Recent lan-
guages focused on the use of data abstraction in parallel programming, particularly with
respect to distribution. Data abstraction enables programmers to adapt programs to a
greater range of architectures than a fixed set of parallel constructs.

16

3 — Matroshka Model and Rationale

Erverything should be made as simple as possible, but no simpler.
— Albert Einstein

This chapter describes the Matroshka (Marpémxka) model of parallel programming and
its rationale. The model has three goals:

Transparency: The model should not hide significant architectural capabilities.

Uniformity: The model should provide uniform mechanisms for defining program el-
ements, reguardless of their eventual implementation.

Efficiency: The model's mechanisms should have efficient implementations.

The Matroshka model uses a few, carefully chosen, general mechanisms for uniformly
defining sequential and paralle] abstractions to achieve a rich programming environment.
In describing SR, Andrews et al. [1986] state “Thus a distributed programming language
necessarily contains more mechanisms than a sequential programming language.” The
Matroshka model contradicts this statement; the generality of its mechanisms results in
fewer mechanisms than commonly found in sequential languages.

The Matroska model supports data abstraction with objects, with synchronous op-
eration invocation and concurrent operation erecution. That is, operations on objects
execute synchronously with respect to their invokers, and execute concurrently with
respect to other operations on the object. Operations may reply early, which enables
an operation to continue concurrently with its invoker. Unlike most object-based pro-
gramming languages, Matroshka uses a copy model of variables and parameters. Finally,
Matroshka supports control abstraction via first-class closures.

Matroshka is not a programming language. It leaves many issues in language design
unspecified in the model, such as syntax, inheritance, static or dynamic typing, etec.
So, the model has a wide range of possible instantiations as a programming language.
To make the presentation concrete, this dissertation defines the Natasha (Hardma)
programming language. Natasha is a statically typed prototype language, intended
only to illustrate the concepts in this dissertation. As a prototype language, it does
not provide many features that are desirable in a production quality language, such as
inheritance. Appendix A rontains the Natasha language definition.

17

3.1 Uniform Data Abstraction

We may wish to use different representations for data depending on the architecture.
To change representations easily, we must abstract the data. Mechanisms for data
abstraction must provide for treating a collection of variables as a single item, and
provide a means to define operations on the collection. Mechanisms for data abstraction
include Modula-2’s modules [Wirth, 1982], Ada’s packages [U.S. DoD, 1983], and CLU’s
clusters [Liskov et al., 1977].

3.1.1 Single Data Abstraction Mechanism

Many parallel programming systems have two mechanisms for data encapsulation, one
for global and parallel abstractions and one for local and sequential abstractions. This
dual mechanism splits the programming environment into two qualitatively different
models of interaction, introducing an artificial granularity in the programmer’s specifi-
cation of parallelism. A better approach is to provide a single encapsulation mechanism
that applies uniformly to both parallel and sequential abstractions.

A language provides uniform data abstraction when all program elements, from
primitive language elements to large user abstractions, use the same data abstraction
mechanism, regardless of the intended concurrency within the elements. If a data ab-
straction mechanism is to apply uniformly to all elements, it must only provide abstrac-
tion. Additional semantics lead to multiple mechanisms because program elements may
need to differ on the other semantics.

The presence of only one abstraction mechanism does not imply only one imple-
mentation for that mechanism. If an abstraction mechanism is to apply to all program
elements, it must have implementations suitable to all element sizes and uses. Program-
mers may then choose the appropriate implementation late in program development.

3.1.2 Data Abstraction via Objects

The Matroshka model provides data abstraction with the object. Every data item within
a program is an object. Each object has a state represented by the states of its com-
ponent variables. Programmers may invoke operations that manipulate the internal
state of an object by invoking operations on component objects. The invocation of
an operation is the sole mechanism for changing the state of the object. Thus, opera-
tion invocation is the fundamental communication mechanism in the Matroshka model.
Matroshka objects are only an encapsulation mechanism.

The object model provides natural abstraction of data, from simple integers to
databases. Identical syntax and semantics for operations on such disparate objects
can still have very different implementations. For example, an integer will likely have a
single machine word representation. A database will likely have its representation split
between volatile and non-volatile storage.

Objects also provide natural units for distribution. Distributed systems and non-
uniform-memory-access multiprocessors have substantial performance differences de-
pending on whether communication occurs within a processor or between different pro-

1

cessors. Objects provide a natural destination for communication, and hence aid the
programming system in reducing communication costs.

Objects tend to reduce the referencing environment of any one piece of code. For
example, without objects programmers tend to share a common pool of variables and use
them in an unstructured way. Programmers using objects tend to collect variables into
objects and limit variable access to a small set of operations. This reduced referencing
environment originally served to reduce programming errors. In parallel programming,
a smaller referencing environment means that there are fewer potential objects with
which another object may communicate. Fewer destinations for communication means
that programmers and programming systems may more easily analyze the program for
possible race conditions and parallel optimizations.

Ia summary, objects provide a single set of syntax and semantics that enables a
wide variety of implementations for different objects, that provides a destination for
communication, and that reduces the referencing environment.

3.1.3 Objects in Natasha

Natasha programmers define object types in terms of the set of variables the object con-
tains, and the methods that implement operations on the object. Object type definitions
have the form:

type-name: object

{ var-name: .
var-name: ...
method operation-name parameter: type { ...};
method operation-name parameter: type { ...};

}<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>